jueves, 31 de marzo de 2016

ESTEQUEOMETRIA

ESTEQUIOMETRIA


Estequiometría en elementos y compuestos

El Mol

Un mol se define como la cantidad de materia que tiene tantos objetos como el número de átomos que hay en exactamente 12 gramos de 12C.

Se ha demostrado que este número es: 6,0221367 x 10exp23

Se abrevia como 6.02 x 10exp23, y se conoce como número de Avogadro.


Pesos atómicos y moleculares

Los subíndices en las fórmulas químicas representan cantidades exactas.

La fórmula del H2O, por ejemplo, indica que una molécula de agua está compuesta exactamente por dos átomos de hidrógeno y uno de oxígeno.

Todos los aspectos cuantitativos de la química descansan en conocer las masas de los compuestos estudiados.


La escala de masa atómica

Los átomos de elementos diferentes tienen masas diferentes

Trabajos hechos en el S. XIX, donde se separaba el agua en sus elementos constituyentes (hidrógeno y oxígeno), indicaban que 100 gramos de agua contenían 11,1 gramos de hidrógeno y 88,9 gramos oxígeno.

Un poco más tarde los químicos descubrieron que el agua estaba constituida por dos átomos de H por cada átomo de O.

Por tanto, nos encontramos que en los 11,1 g de Hidrógeno hay el doble de átomos que en 88,9 g de Oxígeno.

De manera que 1 átomo de O debe pesar alrededor de 16 veces más que 1 átomo de H.

Si ahora, al H (el elemento más ligero de todos), le asignamos una masa relativa de 1 y a los demás elementos les asignamos masas atómicas relativas a este valor, es fácil entender que al O debemos asignarle masa atómica de 16.

Sabemos también que un átomo de hidrógeno, tiene una masa de 1,6735 x 10-24 gramos, que el átomo de oxígeno tiene una masa de 2,6561 X 10-23 gramos.

Si ahora en vez de los valores en gramos usamos la unidad de masa atómica (uma) veremos que será muy conveniente para trabajar con números tan pequeños.

Recordar que la unidad de masa atómica uma no se normalizó respecto al hidrógeno sino respecto al isótopo 12C del carbono ( masa = 12 uma).

Entonces, la masa de un átomo de hidrógeno (1H) es de 1,0080 uma, y la masa de un átomo de oxígeno (16O) es de 15,995 uma.

Una vez que hemos determinado las masas de todos los átomos, se puede asignar un valor correcto a las uma:

1 uma = 1,66054 x 10-24 gramos

y al revés:

1 gramo = 6,02214 x 1023 uma


Masa atómica promedio

Ya hemos visto que la mayoría de los elementos se presentan en la naturaleza como una mezcla de isótopos.

Podemos calcular la masa atómica promedio de un elemento, si sabemos la masa y también la abundancia relativa de cada isótopo.

Ejemplo:

El carbono natural es una mezcla de tres isótopos, 98,892% de 12C y 1,108% de 13C y una cantidad despreciable de 14C.

Por lo tanto, la masa atómica promedio del carbono será:

(0,98892) x (12 uma) + (0,01108) x (13,00335 uma) = 12,011 uma

La masa atómica promedio de cada elemento se le conoce como peso atómico. Estos son los valores que se dan en las tablas periódicas.


Masa Molar

Un átomo de 12C tiene una masa de 12 uma.

Un átomo de 24Mg tiene una masa de 24 uma, o lo que es lo mismo, el doble de la masa de un átomo de 12C.

Entonces, una mol de átomos de 24Mg deberá tener el doble de la masa de una mol de átomos de 12C.

Dado que por definición una mol de átomos de 12C pesa 12 gramos, una mol de átomos de 24Mg debe pesar 24 gramos.

Nótese que la masa de un átomo en unidades de masa atómica (uma) es numéricamente equivalente a la masa de una mol de esos mismos átomos en gramos (g).

La masa en gramos de 1 mol de una sustancia se llama masa molar.

La masa molar (en gramos) de cualquier sustancia siempre es numéricamente igual a su peso fórmula (en uma).



Peso molecular y peso fórmula

El peso fórmula de una sustancia es la suma de los pesos atómicos de cada átomo en su fórmula química.

Por ejemplo, el agua (H2O) tiene el peso fórmula de:

[2 x (1,0079 uma)] + [1 x (15,9994 uma)] = 18,01528 uma

Si una sustancia existe como moléculas aisladas (con los átomos que la componen unidos entre sí) entonces la fórmula química es la fórmula molecular y el peso fórmula es el peso molecular.

Una molécula de H2O pesa 18,0 uma; 1 mol de H2O pesa 18,0 gramos.

Un par iónico NaCl pesa 58,5 uma; 1 mol de NaCl pesa 58,5 gramos.

Por ejemplo, el carbono, el hidrógeno y el oxígeno pueden unirse para formar la molécula del azúcar glucosa que tiene la fórmula química C6H12O6.

Por lo tanto, el peso fórmula y el peso molecular de la glucosa será:

[6 x (12 uma)] + [12 x (1,00794 uma)] + [6 x (15,9994 uma)] = 180,0 uma

Como las sustancias iónicas no forman enlaces químicos sino electrostáticos, no existen como moléculas aisladas, sin embargo, se asocian en proporciones discretas. Podemos describir sus pesos fórmula pero no sus pesos moleculares. El peso fórmula del NaCl es:

23,0 uma + 35,5 uma = 58,5 uma


Composición porcentual a partir de las fórmulas

A veces al analizar una sustancia, es importante conocer el porcentaje en masa de cada uno de los elementos de un compuesto.

Usaremos de ejemplo al metano:

CH4
<pPeso fórmula y molecular:


[1 x (12,011 uma)] + [4 x (1,008)] = 16,043 uma

%C = 1 x (12,011 uma)/16,043 uma = 0,749 = 74,9%

%H = 4 x (1,008 uma)/16,043 uma = 0,251 = 25,1%

Interconversión entre masas, moles y número de partículas

Es necesario rastrear las unidades en los cálculos de interconversión de masas a moles.
A esto lo conocemos formalmente con el nombre de análisis dimensional.

Ejemplo:

Calcular la masa de 1,5 moles de cloruro de calcio

Fórmula química del cloruro de calcio = CaCl2

Masa atómica del Ca = 40,078 uma

Masa atómica del Cl = 35,453 uma
Al ser un compuesto iónico no tiene peso molecular, sino peso fórmula..

Peso fórmula del CaCl2 = (40,078) + 2(35,453) = 110,984 uma

De manera que, un mol de CaCl2 tendrá una masa de 110,984 gramos. Y entonces, 1,5 moles de CaCl2 pesarán:

(1,5 mol)(110,984 gramos/mol) = 166,476 gramos

Ejemplo:

Si tuviera 2,8 gramos de oro, ¿cuántos átomos de oro tendría?

Fórmula del oro: Au

Peso fórmula del Au = 196,9665 uma

Por lo tanto, 1 mol de oro pesa 196,9665 gramos.

De manera que, en 2,8 gramos de oro habrá:

(2,8 gramos)(1 mol/196,9665 gramos) = 0,0142 mol

Sabemos por medio del número de Avogadro que hay aproximadamente 6,02 x 10exp23 atomos/mol.

Por lo cual, en 0,0142 moles tendremos:

(0,0142 moles)(6,02x1023atomos/moles)=8,56x1021 átomos.




Fórmulas empíricas a partir del análisis

Una fórmula empírica nos indica las proporciones relativas de los diferentes átomos de un compuesto.
Estas proporciones son ciertas también al nivel molar.

Entonces, el H2O tiene dos átomos de hidrógeno y un átomo de oxígeno.

De la misma manera, 1,0 mol de H2O está compuesta de 2,0 moles de átomos de hidrógeno y 1,0 mol de átomos de oxígeno.



También podemos trabajar a la inversa a partir de las proporciones molares:
Si conocemos las cantidades molares de cada elemento en un compuesto, podemos determinar la fórmula empírica.

El mercurio forma un compuesto con el cloro que tiene 73,9% de mercurio y 26,1% de cloro en masa. ¿Cuál es su fórmula empírica?.

Supongamos que tenemos una muestra de 100 gramos de este compuesto. Entonces la muestra tendrá 73,9 gramos de mercurio y 26,1 gramos de cloro.

¿Cuántas moles de cada átomo representan las masas individuales?

Para el mercurio: (73,9 g) x (1 mol/200,59 g) = 0,368 moles

Para el cloro: (26,1 g) x (1 mol/35,45 g) = 0,736 mol

¿Cuál es la proporción molar de los dos elementos?

( 0,736 mol Cl/0,368 mol Hg) = 2,0

Es decir, tenemos el doble de moles (o sea átomos) de Cl que de Hg. La fórmula empírica del compuesto sería: HgCl2

Fórmula molecular a partir de la fórmula empírica

La fórmula química de un compuesto obtenida por medio del análisis de sus elementos o de su composición siempre será la fórmula empírica.

Para poder obtener la fórmula molecular necesitamos conocer el peso molecular del compuesto.

La fórmula química siempre será algún múltiplo entero de la fórmula empírica (es decir, múltiplos enteros de los subíndices de la fórmula empírica).

La Vitamina C (ácido ascórbico) tiene 40,92 % de C y 4,58 % de H, en masa.

El resto, hasta completar el 100%, es decir el 54,50 %, es de O.

El peso molecular de este compuesto es de 176 uma. ¿Cuáles serán su fórmula molecular o química y su fórmula empírica?

En 100 gramos de ácido ascórbico tendremos:

40,92 gramos C

4,58 gramos H

54,50 gramos O

Esto nos dirá cuantas moles hay de cada elemento así:

(40,92 g de C) x (1 mol/12,011 g) = 3,407 moles de C

(4,58 g de H) x (1 mol/1,008 g) = 4,544 moles de H

(54,50 g de O) x (1 mol/15,999 g) = 3,406 moles de O

Para determinar la proporción simplemente dividimos entre la cantidad molar más pequeña (en este caso 3,406 o sea la del oxígeno):

C = 3,407 moles/3,406 moles = 1,0

H = 4,544 moles/3,406 moles = 1,333

O = 3,406 moles/3,406 moles = 1,0

Las cantidades molares de O y C parecen ser iguales, en tanto que la cantidad relativa de H parece ser mayor. Como no podemos tener fracciones de átomo, hay que normalizar la cantidad relativa de H y hacerla igual a un entero.

1,333 es como 1 y 1/3, así que si multiplicamos las proporciones de cada átomo por 3 obtendremos valores enteros para todos los átomos.

C = 1,0 x 3 = 3

H = 1,333 x 3 = 4

O = 1,0 x 3 = 3

Es decir C3H4O3

Esta es la fórmula empírica para el ácido ascórbico. Pero, ¿y la fórmula molecular?

Nos dicen que el peso molecular de este compuesto es de 176 uma.

¿Cuál es el peso molecular de nuestra fórmula empírica?

(3 x 12,011) + (4 x 1,008) + (3 x 15,999) = 88,062 uma

El peso molecular de nuestra fórmula empírica es significativamente menor que el valor experimental.

¿Cuál será la proporción entre los dos valores?

(176 uma / 88,062 uma) = 2,0

Parece que la fórmula empírica pesa esencialmente la mitad que la molecular.
Si multiplicamos la fórmula empírica por dos, entonces la masa molecular será la correcta.

Entonces, la fórmula molecular será:

2 x C3H4O3 = C6H8O6

Combustión en aire

Las reacciones de combustión son reacciones rápidas que producen una llama.

La mayoría de estas reacciones incluyen al oxígeno (O2) del aire como reactivo.

Una clase de compuestos que puede participar en las reacciones de combustión son los hidrocarburos (estos son compuestos que sólo tienen C y H).

Cuando los hidrocarburos se queman, reaccionan con el oxígeno del aire (O2) para formar dióxido de carbono (CO2) y agua (H2O).

Por ejemplo cuando el propano se quema la reacción de combustión es:

C3H8(g)  +  5 O2(g)   →   3 CO2(g)  +  4 H2O(l)

Ejemplos de hidrocarburos comunes:

Nombre
Fórmula Molecular
metano
CH4
propano
C3H8
butano
C4H10
octano
C8H18

En las reacciones de combustión, muchos otros compuestos que tienen carbono, hidrógeno y oxígeno (por ejemplo el alcohol metílico CH3OH, y la glucosa C6H12O6) también se queman en presencia de oxígeno (O2) para producir CO2 y H2O.

Cuando conocemos la manera en que una serie de sustancias reaccionan entre sí, es factible determinar características cuantitativas de estas, entre otras su fórmula y hasta su fórmula molecular en caso de conocer el peso molecular de la sustancia.

A esto se le conoce como análisis cuantitativo.

Análisis de combustión

Cuando un compuesto que tiene H y C se quema en presencia de O en un aparato especial, todo el carbono se convierte en CO2 y el hidrógeno en H2O.

La cantidad de carbono existente se determina midiendo la cantidad de CO2 producida.
Al CO2 lo atrapamos usando el hidróxido de sodio, de manera que podemos saber cuanto CO2 se ha producido simplemente midiendo el cambio de peso de la trampa de NaOH y de aquí podemos calcular cuanto C había en la muestra.

De la misma manera, podemos saber cuanto H se ha producido atrapando al H2O y midiendo el cambio de masa en la trampa de perclorato de magnesio.

Ejemplo:

Consideremos la combustión del alcohol isopropílico. Un análisis de la muestra revela que esta tiene únicamente tres elementos: CH y O.

Al quemar 0,255 g de alcohol isopropílico vemos que se producen 0,561 g de CO2 y 0,306 g de H2O.

Con esta información podemos calcular la cantidad de C e H en la muestra, ¿Cuántas moles de tenemos?

(0,561 g de CO2) x (1 mol de CO2/44,0 g) = 0,0128 moles de CO2

Dado que un mol de CO2 tiene un mol de C y dos de O, y tenemos 0,0128 moles de CO2 en la muestra, entonces hay 0,0128 moles de C en nuestra muestra.

¿Cuántos gramos de C tenemos?

(0,0128 moles de C) x (12,01 g/mol de C) = 0,154 g de C

¿Cuántos moles de H tenemos?

(0,306 g de H2O) x (1 mol de H2O/18,0 g) = 0,017 moles de H2O

Dado que un mol de H2O tiene un mol de oxígeno y dos moles de hidrógeno, en 0,017 moles de H2O, tendremos 2 x 0,017 = 0,034 moles de H.

Como el hidrógeno es casi 1 gramo / mol, entonces tenemos 0,034 gramos de hidrógeno en la muestra.

Si ahora sumamos la cantidad en gramos de C y de H, obtenemos:

0,154 gramos (C) + 0,034 gramos (H) = 0,188 gramos

Pero sabemos que el peso de la muestra era de 0,255 gramos.

La masa que falta debe ser de los átomos de oxígeno que hay en la muestra de alcohol isopropílico:

0,255 gramos - 0,188 gramos = 0,067 gramos (O)

Pero esto, ¿cuántos moles de O representa?

(0,067 g de O) x (1 mol de O/15,999 g) = 0,0042 moles de O

Entonces resumiendo, lo que tenemos es:

0,0128 moles Carbono

0,0340 moles Hidrógeno

0,0042 moles Oxígeno

Con esta información podemos encontrar la fórmula empírica, si dividimos entre la menor cantidad para obtener enteros:


C = 3,05 átomos

H = 8,1 átomos

O = 1 átomo

Si consideramos el error experimental, es probable que la muestra tenga la fórmula empírica:

C3H8O



ENLACES QUIMICOS

En química, un dato experimental importante es que sólo los gases nobles y los metales en estado de vapor se presentan en la naturaleza como átomos aislados, en la mayoría de los materiales que nos rodean los elementos están unidos por enlaces químicos.

Enlace significa unión, un enlace químico es la unión de dos o más átomos con un solo fin, alcanzar la estabilidad, tratar de parecerse al gas noble más cercano. Para la mayoría de los elementos se trata de completar ocho electrones en su último nivel.


Las fuerzas atractivas que mantienen juntos los elementos que conforman un compuesto, se explican por la interacción de los electrones que ocupan los orbitales más exteriores de ellos (electrones de valencia).

Cuando dos átomos se acercan se ejercen varias fuerzas entre ellos. Algunas de estas fuerzas tratan de mantenerlos unidos, otras tienden a separarlos.

En la mayoría de los átomos, con excepción de los gases nobles (muy estables, con su última capa o nivel de energía completo con sus ocho electrones), las fuerzas atractivas son superiores a las repulsivas y los átomos se acercan formando un enlace.

Así, podemos considerar al enlace químico como la fuerza que mantiene unidos a dos o más átomos dentro de una molécula.

Todos los enlaces químicos resultan de la atracción simultánea de uno o más electrones por más de un núcleo.

ELECTRONES DE VALENCIA

En la mayoría de los átomos, muchos de los electrones son atraídos con tal fuerza por sus propios núcleos que no pueden interaccionar de forma apreciable con otros núcleos. Sólo los electrones que ocupan los niveles de energía más alejados del núcleo de un átomo pueden interaccionar con dos o más núcleos. A éstos se les llama electrones de valencia

La unión consiste en que uno o más electrones de valencia de algunos de los átomos se introduce en la esfera electrónica del otro.

Aquí debemos recordar que el número de electrones de valencia de un átomo es igual al número de su familia o grupo (que corresponden a las 18 divisiones verticales) en la tabla periódica, usando sólo la antigua numeración romana.
Así, tenemos un electrón de valencia para los elementos de los grupos IA (o grupo 1) y IB (o grupo 11); dos electrones de valencia para los elementos de los grupos IIA y IIB (o grupos 2 y 12), y cuatro para los elementos de los grupos IVB y IVA (o grupos 4 y 14).

                                           La ilustración describe cristales de Cloruro de sodio (enlace químico iónico).


Todos los átomos de los gases nobles (o sea: neón, argón, criptón, xenón y radón) tienen ocho electrones de valencia, excepto el helio, que tiene dos. Los elementos de las familias (grupos) cercanas a los gases nobles tienden a reaccionar para adquirir la configuración de ocho electrones de valencia de los gases nobles.
Esta configuración electrónica de los gases nobles les comunica inactividad química y una gran estabilidad.
Esto se conoce como la regla del octeto de Lewis, que fue enunciada por el químico estadounidense Gilbert N. Lewis.

Regla del octeto
Los átomos tienden a perder, ganar o compartir electrones en forma tal que queden con un total de 8 electrones en su nivel energético más exterior, esta configuración les proporciona gran estabilidad.

ESTRUCTURA O ANOTACIÓN DE LEWIS

La notación o estructura de Lewis es una representación gráfica que muestra la cantidad de electrones de valencia que hay en el último orbital.
La estructura de Lewis fue propuesta por Gilbert Lewis, la cantidad de electrones de valencia se representan con puntos alrededor del elemento químico (símbolo), como vemos a la derecha en el ejemplo del Br.




VALENCIA ELECTROQUIMICA

Se llama valencia electroquímica al número de electrones que ha perdido o ganado un átomo para transformarse en ion. Si dicho número de electrones perdidos o ganados es 1, 2, 3, etcétera, se dice que el ion (o ión) es monovalente, bivalente, trivalente, etcétera.

IONES

Los átomos están constituidos por el núcleo y la corteza (capas o niveles de energía que ocupan los electrones). El número de cargas positivas (cantidad de protones) del núcleo es igual al número de electrones que giran en la corteza; de ahí suelectronegatividad (que en estado neutro es cero, y significa igual cantidad de protones a igual cantidad de electrones). 

Si la corteza electrónica de un átomo neutro pierde o gana electrones se forman los llamados iones.

Entonces, los iones son átomos o grupos atómicos que tienen un número mayor o menor de electrones que de protones.

En el primer caso (más electrones) los iones tienen carga negativa y reciben el nombre de aniones, y en el segundo (menos electrones) están cargados positivamente y se llaman cationes.

ELEMENTOS ELECTROPOSITIVOS Y ELECTRONEGATIVOS

Se llaman elementos electropositivos aquellos que tienen tendencia a perder electrones transformándose en cationes; a ese grupo pertenecen los metales.

En cambio, elementos electronegativos son los que toman con facilidad electrones transformándose en aniones; a este grupo pertenecen los metaloides.

Lo elementos mas electronegativos (tendencia a perder electrones) estan situados en la parte izquierda del sistema o tabla periodica; son los llamados elementos alcalinos. A medida que se avanza en cada periodo hacia la derecha va disminuyendo el caracter electropositivo, llegandose, finalmente, a los halogenos de fuerte caracter electronegativo (elementos con tendencia a tomar electrones).

CONCEPTOS:

ION: atomo o conjunto de atomos que poseen carga electrica (han cedido o han captado electrones).

CATION:ion con carga positiva (ha cedido electrones). Ejemplo: Ca+2 ion calcio, NH4+ ion amonio.

ANION: ion con carga negativa (ha captado electrones). Ejemplo: Br - ion bromuro, ClO2 - ion clorito.

TIPOS DE ENLACES

Como dijimos al principio, el hecho de que los átomos se combinen  o enlacen para formar nuevas sustancias se explica por la tendencia a conformar estructuras más estables. De ahí que dichos enlaces químicos sean considerados como un incremento de estabilidad.

Para lograr ese estado ideal estable, los átomos pueden utilizar algún método que les acomode, eligiendo entre: ceder o captar electrones, compartir electrones con otro átomo o ponerlos en común junto con otros muchos.

De estas tres posibilidades nacen los tres tipos de enlace químico: iónico, covalente y metálico.

Tomando como base la diferencia de electronegatividad entre los átomos que forman un enlace se puede predecir el tipo de enlace que se formará:




ENLACE IONICO

Cuando una molécula de una sustancia contiene átomos de metales y no metales, los electrones son atraídos con más fuerza por los no metales, que se transforman en iones con carga negativa; los metales, a su vez, se convierten en iones con carga positiva.

Entonces, los iones de diferente signo se atraen electrostáticamente, formando enlaces iónicos.

Este enlace se origina cuando se transfiere uno o varios electrones de un átomo a otro.

Debido al intercambio electrónico, los átomos se cargan positiva y negativamente, estableciéndose así una fuerza de atracción electrostática que los enlaza. Se forma entre dos átomos con una apreciable diferencia de electronegatividades, los elementos de los grupos I y II A forman enlaces iónicos con los elementos de los grupos VI y VII A.


En general, cuando el compuesto está constituido por un metal y un no-metal y además la diferencia en electronegatividades es grande, el compuesto es iónico. Es el caso del bromuro de potasio (KBr).


Propiedades de un enlace iónico:

Los productos resultantes de un enlace iónico poseen características especiales:

   •   Son sólidos de elevado punto de fusión y ebullición.

   •   La mayoría son solubles en disolventes polares como el agua.

   •   La mayoría son insolubles en disolventes apolares como el benceno o el hexano.

   •   Las sustancias iónicas conducen la electricidad cuando están en estado líquido o en        disoluciones acuosas por estar formados por partículas cargadas (iones),  pero no en 
estado cristalino, porque los iones individuales son demasiado grandes para moverse libremente a través del cristal.

   •   Al intentar deformarlos se rompe el cristal, son frágiles.

ENLACE COVALENTE 

Se presenta cuando se comparten uno o más pares de electrones entre dos átomos cuya diferencia de electronegatividad es pequeña.

Enlace covalente apolar (o no polar)

Si los átomos enlazados son no metales e idénticos (como en N2 o en O2), los electrones son compartidos por igual por los dos átomos, y el enlace se llama covalente apolar.



Se establece entre átomos con igual electronegatividad. Átomos del mismo elemento presentan este tipo de enlace.


En este enlace covalente no polar, la densidad electrónica es simétrica con respecto a un plano perpendicular a la línea entre los dos núcleos. Esto es cierto para todas las moléculas diatómicas homonucleares (formadas por dos átomos del mismo elemento) , tales como H2, O2, N2, F2 y Cl2, porque los dos átomos idénticos tienen electronegatividades idénticas. Por lo que podemos decir:los enlaces covalentes en todas las moléculas diatómicas homonucleares deben ser no polares. Por ejemplo, una molécula de dióxido de carbono (CO2) es lineal con el átomo de carbono al centro y, por lo tanto, debido a su simetría es covalente apolar.

ENLACE COVALENTE POLAR

 Si los átomos son no metales pero distintos (como en el óxido nítrico, NO), los electrones son compartidos en forma desigual y el enlace se llama covalente polar (polar porque la molécula tiene un polo eléctrico positivo y otro negativo, y covalente porque los átomos comparten los electrones, aunque sea en forma desigual).

Se establece entre átomos con electronegatividades próximas pero no iguales.
Estas sustancias no conducen la electricidad ni tienen brillo, ductilidad o maleabilidad.

Veamos un ejemplo:

¿Qué tipo de enlace se formará entre H y O?
Según la Tabla de Electronegatividades de Pauli, el Hidrógeno tiene una electronegatividad de 2,2  y el Oxígeno 3,44, por lo tanto la diferencia de electronegatividades será: 3,44 –2.2= 1,24.

El resultado de la operación entrega 1,24 cifra que es menor que 1.9 y menor que 0,1.
Por lo tanto, el enlace será covalente polar. Además, si no se conociera la electronegatividad de los elementos bastaría saber que son dos no metales distintos para definir su enlace como covalente polar.

Enlace covalente coordinado

Se establece por compartición de electrones entre dos átomos, pero sólo un átomo aporta el par de electrones compartidos.

Propiedades de los enlaces covalentes

   •   Son gases, líquidos o sólidos de bajo punto de fusión.

   •   La mayoría son insolubles en disolventes polares.

   •   La mayoría son solubles en disolventes apolares.

   •   Los líquidos y sólidos fundidos no conducen la electricidad.

   •   Las disoluciones acuosas son malas conductoras de la electricidad porque no contienen partículas cargadas.

ENLACE METALICO 

Si los átomos enlazados son elementos metálicos, el enlace se llama metálico. Los electrones son compartidos por los átomos, pero pueden moverse a través del sólido proporcionando conductividad térmica y eléctrica, brillo, maleabilidad y ductilidad.
Los electrones que participan en él se mueven libremente, a causa de la poca fuerza de atracción del núcleo sobre los electrones de su periferia.

Cuando los electrones son compartidos simétricamente, el enlace puede ser metálico o covalente apolar; si son compartidos asimétricamente, el enlace es covalente polar; la transferencia de electrones proporciona enlace iónico. Generalmente, la tendencia a una distribución desigual de los electrones entre un par de átomos aumenta cuanto más separados están en la tabla periodica.

Cómo se forman los enlaces covalentes no polares y polares:

Al contrario de los enlaces iónicos, en los cuales ocurre una transferencia completa de electrones, el enlace covalente ocurre cuando dos (o más) elementos comparten electrones.
El enlace covalente ocurre porque los átomos en el compuesto tienen una tendencia similar hacia los electrones (generalmente para ganar electrones). Esto ocurre comúnmente cuando dos no metales se enlazan. Ya que ninguno de los no metales que participan en el enlace querrá ganar electrones, estos elementos compartirán electrones para poder llenar sus envolturas de valencia.

Un buen ejemplo de un enlace covalente es ese que ocurre entre dos átomos de hidrógeno.
Los átomos de hidrógeno (H) tienen un electrón de valencia en su primera y única capa o envoltura. Puesto que la capacidad de esta envoltura es de dos electrones, cada átomo hidrógeno tenderá a captar un segundo electrón.

Enlace covalente apolar entre dos átomos de hidrógeno (H)


En un esfuerzo por recoger un segundo electrón, el átomo de hidrógeno reaccionará con átomos H vecinos para formar el compuesto H2. Ya que el compuesto de hidrógeno es una combinación de átomos igualados, los átomos compartirán cada uno de sus electrones individuales, formando así un enlace covalente. De esta manera, ambos átomos comparten la estabilidad de una envoltura de valencia.


Siempre que dos átomos del mismo elemento se enlazan (formando moléculas diatómicas homonucleares), tendremos un enlace no polar.

Otro ejemplo de enlace covalente apolar (no polar), pero con átomos diferentes, es el metano (CH4).

La electronegatividad del carbono es 2,5 y la del hidrógeno es 2,0; la diferencia entre ellos es de 0,5 (menor de 0,3), por lo que el enlace se considera polar. Además, el metano es una molécula muy simétrica, por lo que las pequeñas diferencias de electronegatividad en sus cuatro enlaces se anulan entre sí.
En cambio, se forma un enlace polar cuando los electrones son desigualmente compartidos (permanecen más tiempo cerca de un átomo que del otro) entre dos átomos. Los enlaces covalentes polares ocurren porque un átomo tiene una mayor afinidad hacia los electrones que el otro (sin embargo, no tanta como para empujar completamente los electrones y formar un ión).
Esto quiere decir que, en un enlace covalente polar los electrones que se enlazan pasarán un mayor tiempo alrededor del átomo que tiene la mayor afinidad hacia los electrones. Un buen ejemplo del enlace covalente polar es el enlace hidrógeno - oxígeno en la molécula de agua.